Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Liliana Dobrzańska

Department of Chemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

Correspondence e-mail: lianger@sun.ac.za

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.003 Å R factor = 0.025 wR factor = 0.064 Data-to-parameter ratio = 19.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,2'-Dimethyl-3,3'-(p-phenylenedimethylene)diimidazol-1-ium dibromide

In the centrosymmetric title compound, $C_{16}H_{20}N_4^{2-}\cdot Br_2^+$, the Br counter-ions form hydrogen bonds with protonated imidazole groups. Neighbouring cations are held together *via* weak C-H···Br hydrogen bonds and offset π - π interactions, resulting in the formation of a three-dimensional structure.

Received 2 November 2005 Accepted 8 November 2005 Online 16 November 2005

Comment

The synthesis of metal complexes with flexible ditopic ligands, especially ligands with imidazole-type rings separated by an aromatic spacer, has attracted a great deal of interest because of the possibility of obtaining topologically interesting structures (Carlucci *et al.*, 2005; Liu, Hu *et al.*, 2001). Conformational flexibility is not only a feature of the ligand's reactions with metal salts, but also the generation of different supramolecular assemblies of salts and neutral ligand structures in the solid state. For example, bitmb [bitmb = 1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene] adopts the *cis* conformation in its hexafluorophosphate salt (Liu, Su *et al.*, 2001), whereas neutral bix dihydrate [bix = 1,4-bis(imidazol-1-ylmethyl)benzene] (Abrahams *et al.*, 1998) and the perchlorate salt of bimp [bimp = 4,4'-bis(imidazol-1-ylmethyl)biphenyl] (Fei *et al.*, 2000) exhibit *trans* conformations.

In our studies of complexes generated from 1,4-bis(2methylimidazol-1-ylmethyl)benzene (Dobrzańska, Lloyd *et al.*, 2005; Dobrzańska, Raubenheimer & Barbour, 2005), we have unexpectedly obtained single crystals of the dibromide salt, (I), of the ligand. The asymmetric unit comprises one halfcation and a Br⁻ counter-ion (Fig. 1). The cation is disposed about an inversion centre and from symmetry adopts a *trans* conformation with respect to the plane of the aromatic spacer. The cation is hydrogen-bonded in opposite directions *via* protonated imidazole rings to Br⁻ anions (Table 1). The two relatively weak C5–H5A···Br1ⁱ and C5–H5B···Br1ⁱⁱ hydrogen bonds (symmetry codes as listed in Table 1) generate a three-dimensional supramolecular assembly (Fig. 2) stabilized by offset π - π interactions, with a centroid–

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. $N-H\cdots Br$ hydrogen bonds are shown as dashed red lines. The unlabelled half of the asymmetric unit is related by the symmetry operation (2 - x, 2 - y, 1 - z).

centroid distance between the two nearest C₆-aromatic ring planes of 3.65 Å (Fig. 3).

Experimental

 α, α' -Dibromo-*p*-xylene was added to a methanolic solution of 1,4bis(2-methylimidazol-1-ylmethyl)benzene in a 1:1 molar ratio and refluxed for 17 h at 343 K. Colourless crystals suitable for diffraction were obtained by slow evaporation of a methanolic solution of (I).

Crystal data

 $C_{16}H_{20}N_4^{2+}\cdot 2Br^{-}$ $M_r = 428.18$ Monoclinic, $P2_1/c$ a = 7.7378 (8) Å b = 16.0080 (16) Å c = 7.2599 (7) Å $\beta = 109.115$ (2)° V = 849.68 (15) Å³ Z = 2

Data collection

Bruker APEX CCD area-detector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1997) $T_{min} = 0.218, T_{max} = 0.870$ 5257 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.064$ S = 1.071966 reflections 101 parameters H-atom parameters constrained $D_x = 1.674 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 3298 reflections $\theta = 2.8-28.3^{\circ}$ $\mu = 4.77 \text{ mm}^{-1}$ T = 100 (2) K Plate, colourless $0.46 \times 0.21 \times 0.03 \text{ mm}$

1966 independent reflections 1803 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 28.3^{\circ}$ $h = -9 \rightarrow 8$ $k = -20 \rightarrow 20$ $l = -9 \rightarrow 7$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0381P)^2 \\ &+ 0.3603P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.65 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.25 \text{ e } \text{\AA}^{-3} \end{split}$$

Table	1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
N2-H9···Br1	0.88	2.37	3.214 (2)	162
$C5-H5A\cdots Br1^{i}$	0.99	2.80	3.702 (2)	152
$C5-H5B\cdots Br1^{ii}$	0.99	2.89	3.736 (2)	144

Symmetry codes: (i) x + 1, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Figure 2

Packing diagram of (I), viewed along [001]. Hydrogen bonds are shown as dashed blue $(C-H\cdots Br)$ and red $(N-H\cdots Br)$ lines. H atoms not participating in hydrogen bonding have been omitted for clarity. Symmetry codes are as listed in Table 1.

Figure 3

Capped-stick representation showing the π - π stacking geometry of (I). N-H···Br hydrogen bonds are shown as dashed red lines.

H atoms were positioned geometrically, with C-H = 0.95 (aromatic), 0.98 (methyl) and 0.99 Å (methylene), and N-H = 0.88 Å, and refined as riding, with $U_{\rm iso}(\rm H) = 1.2U_{\rm eq}(\rm C,N)$ and $1.5U_{\rm eq}(\rm methyl C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Atwood & Barbour, 2003; Barbour, 2001); software used to prepare material for publication: *X-SEED*.

The author thanks the Claude Harris Leon Foundation for financial support and further acknowledges the Nicolaus Copernicus University for study leave.

References

Abrahams, B. F., Hoskins B. F., Robson, R. & Slizys D. A. (1998). Acta Cryst. C54, 1666–1668.

- Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2001). SMART. Version 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carlucci, L., Ciani, G. & Proserpio, D. M. (2005). Cryst. Growth Des. 5, 37–39.
 Dobrzańska, L., Lloyd, G. O., Raubenheimer, H. G. & Barbour, L. J. (2005). J. Am. Chem. Soc. 127, 13134–13135.
- Dobrzańska, L., Raubenheimer, H. G. & Barbour, L. J. (2005). Chem. Commun. 40, 5050-5052.
- Fei, B.-L., Sun, W.-Y., Zhang, Y.-A., Yu, K.-B. & Tang, W.-X. (2000). J. Chem. Soc. Dalton Trans. pp. 2345–2348.
- Liu, H.-K., Hu, J., Wang, T.-W., Yu, X.-L., Liu, J. & Kang, B. (2001). J. Chem. Soc. Dalton Trans. pp. 3534–3540.
- Liu, H.-K., Su, C.-Y., Qian, C.-M., Liu, J., Tan, H.-Y. & Kang, B.-S. (2001). J. Chem. Soc. Dalton Trans. pp. 1167–1168.
- Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and SADABS (Version 2.05). University of Göttingen, Germany.